Undersaturated oil viscosity correlation for adverse conditions

Bergman, D.F. America United States
Sutton, R.P. Marathon Oil Company, United States

Abstract
The determination of viscosity is required for evaluation of the pressure drop resulting from flow through porous media, tubing or pipelines. Viscosity is a necessary property to ascertain well productivity or to properly size tubing, pipelines and pumps. Numerous methods exist to estimate viscosity for computer calculations. Oils encountered in deep water environments are often highly undersaturated - in some cases in excess of 15,000 psi. For transport, the dead oil must be pumped in an environment with temperatures as low as 35°F. At this temperature, the dead oil atmospheric viscosity can be in excess of 500 cp. The pressure required to pump oil through pipelines from deep water can exceed 3000 psi at the pump on the platform and over 5000 psi at the sea floor. The pressure effect on viscosity results in a significant additional increase in this property which can adversely affect pipeline performance. The existing methods for estimating undersaturated viscosity were not developed using data that encompasses the pressure or viscosity range that are currently encountered by the industry. A large database comprised of 1,399 oils and 10,248 data points was constructed to evaluate the accuracy of existing correlation methods. Pressure differentials up to 25,000 psi and viscosity in excess of 1000 cp are included in the database to ensure that viscosity at both typical conditions and the extreme conditions encountered in deep water are represented. The existing methods are shown to be inadequate over this wide range of conditions. A new method was developed that offers improved accuracy and consistency over the expanded range of viscosity and pressure differential. Copyright 2006, Society of Petroleum Engineers.

Indexed keywords
Atmospheric viscosity; Deep water; Viscosity correlation; Viscosity pressure

References
5. ASME pressure-viscosity report
 (1953) Viscosity and Density of over 40 Lubricating Fluids of Known Composition at
 Pressures to 150,000 Psi and Temperatures to 435 F, Vol. I and II
 , ASME, New York, NY
6. Barus, C. Isothermals, isopiastics and isometrics relative to viscosity (1893) The
 American Journal of Science, 45 (266), pp. 87-96.
7. Beal, C. The viscosity of air, water, natural gas, crude oil and its associated gases at oil
 field temperatures and pressures (1970) Oil and Gas Property Evaluation and Reserve
 Estimates, pp. 114-127. SPE Reprint Series No. 3, SPE, Richardson, TX
 17 SPE, Richardson, TX
 of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to
 times, doi: 10.1007/s10765-004-5742-0
10. De Ghetto, G., Paone, F., Villa, M. Reliability analysis on PVT correlations
 the Oct. 25-27
11. Dindoruk, B., Christman, P.G. PVT properties and viscosity correlations for Gulf of
 (Sept 30-Oct 3)
 P. Pressure (1-1000 bars) and temperature (20-100°C) dependence of the viscosity of
13. Elsharkawy, A.M., Alikhan, A.A. Models for predicting the viscosity of Middle East crude
 Correlations for Colombian Crude Oils. unsolicited paper SPE 24538 (June)
15. Hershey, M.D., Hopkins, R.F. (1954) Viscosity of Lubricants under Pressure. ASME,
 New York, NY
16. Hossain, M.S., Sarica, C., Zhang, H.Q., Rhyne, L., Greenhill, K.L. Assessment and
 development of heavy-oil viscosity correlations (2005) 2005 SPE International Thermal
 Operations and Heavy Oil Symposium. SPE/PS-CIM/CHOA 97907 PS2005-407
 presented at the, Calgary, Canada (Nov. 103)
 Properties. MS Thesis, University of Tulsa
 Properties. Unsolicited Paper SPE 23556 (Sept)
 for Saudi Arabian crude oils (1987) 5th SPE middle East Oil Show in Manama SPE
 15720 presented at the, Bahrain (Mar 7-10)
20. Kouzel, B. How pressure affects liquid viscosity (1965) Hyd. Proc., p. 120. March
 School of Mines (May)

